Modelling A.I. in Economics

BTOG Stock: A Downfall?

Outlook: Bit Origin Limited Ordinary Shares is assigned short-term Ba2 & long-term B1 estimated rating.
AUC Score : What is AUC Score?
Short-Term Revised1 :
Dominant Strategy : Hold
Time series to forecast n: for Weeks2
Methodology : Modular Neural Network (Market Direction Analysis)
Hypothesis Testing : Ridge Regression
Surveillance : Major exchange and OTC

1The accuracy of the model is being monitored on a regular basis.(15-minute period)

2Time series is updated based on short-term trends.


Bit Origin Limited Ordinary Shares prediction model is evaluated with Modular Neural Network (Market Direction Analysis) and Ridge Regression1,2,3,4 and it is concluded that the BTOG stock is predictable in the short/long term. Modular neural networks (MNNs) are a type of artificial neural network that can be used for market direction analysis. MNNs are made up of multiple smaller neural networks, called modules. Each module is responsible for learning a specific task, such as identifying patterns in data or predicting future price movements. The modules are then combined to form a single neural network that can perform multiple tasks.In the context of market direction analysis, MNNs can be used to identify patterns in market data that suggest that the market is likely to move in a particular direction. This information can then be used to make predictions about future price movements.5 According to price forecasts for 6 Month period, the dominant strategy among neural network is: Hold

Graph 15

Key Points

  1. What are the most successful trading algorithms?
  2. Why do we need predictive models?
  3. Is Target price a good indicator?

BTOG Stock Price Forecast

We consider Bit Origin Limited Ordinary Shares Decision Process with Modular Neural Network (Market Direction Analysis) where A is the set of discrete actions of BTOG stock holders, F is the set of discrete states, P : S × F × S → R is the transition probability distribution, R : S × F → R is the reaction function, and γ ∈ [0, 1] is a move factor for expectation.1,2,3,4


Sample Set: Neural Network
Stock/Index: BTOG Bit Origin Limited Ordinary Shares
Time series to forecast: 6 Month

According to price forecasts, the dominant strategy among neural network is: Hold


F(Ridge Regression)6,7= p a 1 p a 2 p 1 n p j 1 p j 2 p j n p k 1 p k 2 p k n p n 1 p n 2 p n n X R(Modular Neural Network (Market Direction Analysis)) X S(n):→ 6 Month i = 1 n r i

n:Time series to forecast

p:Price signals of BTOG stock

j:Nash equilibria (Neural Network)

k:Dominated move of BTOG stock holders

a:Best response for BTOG target price


Modular neural networks (MNNs) are a type of artificial neural network that can be used for market direction analysis. MNNs are made up of multiple smaller neural networks, called modules. Each module is responsible for learning a specific task, such as identifying patterns in data or predicting future price movements. The modules are then combined to form a single neural network that can perform multiple tasks.In the context of market direction analysis, MNNs can be used to identify patterns in market data that suggest that the market is likely to move in a particular direction. This information can then be used to make predictions about future price movements.5 Ridge regression is a type of regression analysis that adds a penalty to the least squares objective function in order to reduce the variance of the estimates. This is done by adding a term to the objective function that is proportional to the sum of the squares of the coefficients. The penalty term is called the "ridge" penalty, and it is controlled by a parameter called the "ridge constant". Ridge regression can be used to address the problem of multicollinearity in linear regression. Multicollinearity occurs when two or more independent variables are highly correlated. This can cause the standard errors of the coefficients to be large, and it can also cause the coefficients to be unstable. Ridge regression can help to reduce the standard errors of the coefficients and to make the coefficients more stable.6,7

 

For further technical information as per how our model work we invite you to visit the article below: 

How do AC Investment Research machine learning (predictive) algorithms actually work?

BTOG Stock Forecast (Buy or Sell) Strategic Interaction Table

Strategic Interaction Table Legend:

X axis: *Likelihood% (The higher the percentage value, the more likely the event will occur.)

Y axis: *Potential Impact% (The higher the percentage value, the more likely the price will deviate.)

Z axis (Grey to Black): *Technical Analysis%

Financial Data Adjustments for Modular Neural Network (Market Direction Analysis) based BTOG Stock Prediction Model

  1. For some types of fair value hedges, the objective of the hedge is not primarily to offset the fair value change of the hedged item but instead to transform the cash flows of the hedged item. For example, an entity hedges the fair value interest rate risk of a fixed-rate debt instrument using an interest rate swap. The entity's hedge objective is to transform the fixed-interest cash flows into floating interest cash flows. This objective is reflected in the accounting for the hedging relationship by accruing the net interest accrual on the interest rate swap in profit or loss. In the case of a hedge of a net position (for example, a net position of a fixed-rate asset and a fixed-rate liability), this net interest accrual must be presented in a separate line item in the statement of profit or loss and other comprehensive income. This is to avoid the grossing up of a single instrument's net gains or losses into offsetting gross amounts and recognising them in different line items (for example, this avoids grossing up a net interest receipt on a single interest rate swap into gross interest revenue and gross interest expense).
  2. To calculate the change in the value of the hedged item for the purpose of measuring hedge ineffectiveness, an entity may use a derivative that would have terms that match the critical terms of the hedged item (this is commonly referred to as a 'hypothetical derivative'), and, for example for a hedge of a forecast transaction, would be calibrated using the hedged price (or rate) level. For example, if the hedge was for a two-sided risk at the current market level, the hypothetical derivative would represent a hypothetical forward contract that is calibrated to a value of nil at the time of designation of the hedging relationship. If the hedge was for example for a one-sided risk, the hypothetical derivative would represent the intrinsic value of a hypothetical option that at the time of designation of the hedging relationship is at the money if the hedged price level is the current market level, or out of the money if the hedged price level is above (or, for a hedge of a long position, below) the current market level. Using a hypothetical derivative is one possible way of calculating the change in the value of the hedged item. The hypothetical derivative replicates the hedged item and hence results in the same outcome as if that change in value was determined by a different approach. Hence, using a 'hypothetical derivative' is not a method in its own right but a mathematical expedient that can only be used to calculate the value of the hedged item. Consequently, a 'hypothetical derivative' cannot be used to include features in the value of the hedged item that only exist in the hedging instrument (but not in the hedged item). An example is debt denominated in a foreign currency (irrespective of whether it is fixed-rate or variable-rate debt). When using a hypothetical derivative to calculate the change in the value of such debt or the present value of the cumulative change in its cash flows, the hypothetical derivative cannot simply impute a charge for exchanging different currencies even though actual derivatives under which different currencies are exchanged might include such a charge (for example, cross-currency interest rate swaps).
  3. Alternatively, the entity may base the assessment on both types of information, ie qualitative factors that are not captured through the internal ratings process and a specific internal rating category at the reporting date, taking into consideration the credit risk characteristics at initial recognition, if both types of information are relevant.
  4. This Standard does not specify a method for assessing whether a hedging relationship meets the hedge effectiveness requirements. However, an entity shall use a method that captures the relevant characteristics of the hedging relationship including the sources of hedge ineffectiveness. Depending on those factors, the method can be a qualitative or a quantitative assessment.

*International Financial Reporting Standards (IFRS) adjustment process involves reviewing the company's financial statements and identifying any differences between the company's current accounting practices and the requirements of the IFRS. If there are any such differences, neural network makes adjustments to financial statements to bring them into compliance with the IFRS.

BTOG Bit Origin Limited Ordinary Shares Financial Analysis*

Rating Short-Term Long-Term Senior
Outlook*Ba2B1
Income StatementB2C
Balance SheetBaa2Baa2
Leverage RatiosBaa2B2
Cash FlowBa2C
Rates of Return and ProfitabilityCaa2Baa2

*Financial analysis is the process of evaluating a company's financial performance and position by neural network. It involves reviewing the company's financial statements, including the balance sheet, income statement, and cash flow statement, as well as other financial reports and documents.
How does neural network examine financial reports and understand financial state of the company?

References

  1. J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence Re- search, 15:319–350, 2001.
  2. Firth JR. 1957. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis (Special Volume of the Philological Society), ed. JR Firth, pp. 1–32. Oxford, UK: Blackwell
  3. Keane MP. 2013. Panel data discrete choice models of consumer demand. In The Oxford Handbook of Panel Data, ed. BH Baltagi, pp. 54–102. Oxford, UK: Oxford Univ. Press
  4. C. Wu and Y. Lin. Minimizing risk models in Markov decision processes with policies depending on target values. Journal of Mathematical Analysis and Applications, 231(1):47–67, 1999
  5. Efron B, Hastie T. 2016. Computer Age Statistical Inference, Vol. 5. Cambridge, UK: Cambridge Univ. Press
  6. L. Prashanth and M. Ghavamzadeh. Actor-critic algorithms for risk-sensitive MDPs. In Proceedings of Advances in Neural Information Processing Systems 26, pages 252–260, 2013.
  7. E. Collins. Using Markov decision processes to optimize a nonlinear functional of the final distribution, with manufacturing applications. In Stochastic Modelling in Innovative Manufacturing, pages 30–45. Springer, 1997
Frequently Asked QuestionsQ: What is the prediction methodology for BTOG stock?
A: BTOG stock prediction methodology: We evaluate the prediction models Modular Neural Network (Market Direction Analysis) and Ridge Regression
Q: Is BTOG stock a buy or sell?
A: The dominant strategy among neural network is to Hold BTOG Stock.
Q: Is Bit Origin Limited Ordinary Shares stock a good investment?
A: The consensus rating for Bit Origin Limited Ordinary Shares is Hold and is assigned short-term Ba2 & long-term B1 estimated rating.
Q: What is the consensus rating of BTOG stock?
A: The consensus rating for BTOG is Hold.
Q: What is the prediction period for BTOG stock?
A: The prediction period for BTOG is 6 Month



Stop Guessing, Start Winning.
Get Today's AI-Driven Picks.

Click here to see what the AI recommends.




Premium

  • Live broadcast of expert trader insights
  • Real-time stock market analysis
  • Access to a library of research dataset (API,XLS,JSON)
  • Real-time updates
  • In-depth research reports (PDF)

Login
This project is licensed under the license; additional terms may apply.